Unconditionally Stable Fully Explicit Finite Difference Solution of Solidification Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

GPU-acceleration of parallel unconditionally stable group explicit finite difference method

Graphics Processing Units (GPUs) are high performance co-processors originally intended to improve the use and quality of computer graphics applications. Since researchers and practitioners realized the potential of using GPU for general purposes, their applications have been extended to other fields, out of computer graphics scope. The main objective of this paper is to evaluate the impact of ...

متن کامل

unconditionally stable difference scheme for the numerical solution of nonlinear rosenau-kdv equation

in this paper we investigate a nonlinear evolution model described by the rosenau-kdv equation. we propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of o(τ2 + h2). furthermore we show the existence and uniqueness of numerical solutions. comparing the numerical results with other methods in...

متن کامل

Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary an...

متن کامل

Unconditionally stable high-order time integration for moving mesh finite difference solution of linear convection-diffusion equations

This paper is concerned with moving mesh finite difference solution of partial differential equations. It is known that mesh movement introduces an extra convection term and its numerical treatment has a significant impact on the stability of numerical schemes. Moreover, many implicit second and higher order schemes, such as the Crank-Nicolson scheme, will loss their unconditional stability. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metallurgical and Materials Transactions B

سال: 2007

ISSN: 1073-5615,1543-1916

DOI: 10.1007/s11663-007-9114-6